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Abstract 

We investigate extensions of the diffeomorphism group of the circle by modules of l-densities 
- as well as their Lie algebras -from the point of view of the coadjoint representation. The orbits 
of a moment p are classified according to the zeroes of the functions involved in CL, in the spirit of 
the classification of the Bon-Virasoro orbits. 0 2000 Elsevier Science B.V. All rights reserved. 

Subj. Class.: Differential geometry 
1991 h4SC: 17B68,22E65,22E70,81RlO 
Keywor& Coadjoint orbits; Tensor densities; Virasoro algebra 

0. Introduction 

The classification of coadjoint orbits of the Bott-Virasoro group - investigated by Kir- 
illov, Lazutkin and Pankratova, Segal, Witten, and completed by Guieu (cf. [3,4]) - has 
proved to be of great interest in the understanding of the geometry of some related struc- 
tures, such as the space of Hill operators and the space of projective structures on the 
circle. 

A natural generalization of the Bott-Virasoro group (resp. the Virasoro algebra) is given 
by extensions of the group Dzf+(S’) of orientation-preserving diffeomorphisms of the cir- 
cle (resp. extensions of the Lie algebra kt(S’) of vector fields on the circle) by modules F,, 
of k-densities on the circle. The problem of classifying such extensions is equivalent to that 
of the calculation of the cohomology groups H&(Diff+(S’); FJJ and H2(Vect(S’); FA). 
The latter was determined in [lo] (in [l] the formal case was solved), but the associated 
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cocycles were found in [9], as well as the calculation of H&(D@+(S’); 3~), with explicit 
formulas for the group cocycles (Section 1). Mysteriously, these second cohomology groups 
happen to be non-trivial only for h E {0, 1,2,5,7}. 

The present work proposes to study the coadjoint orbits of the corresponding extensions. 
New phenomena in the classification of orbits appear when h exceeds the critical value 
A = 1 (Section 4): if p is an element of the dual of the Lie algebra, the multiplicities of 
the zeroes of the functions involved in p play an essential role in the classification. In the 
case h = 2 (detailed in Section 5), the Lie algebra Vect(Sl) D 32 happens to be isomorphic 
to its regular dual space: this leads to a classification slightly different from cases h = 5 
and 7. As for the case h = 0 (Section 3), it is equivalent to that of a Virasoro-type central 
extension of the semi-direct group product D@(S’) D Coo(S1, R), and is developed in 
Section 7. 

1. Cohomological results 

Denote by Diff ’ (S ’ ) the Lie-Frechet group of orientation-preserving diffeomorphisms 
of the circle. It will be convenient to work with its universal covering, the group Diff z (R) 
of Z-equivariant diffeomorphisms of the real line: 

Diffz(R) = {$ E Difi(R)I r&x + 1) = &x) + 1 Vx E R]. 

Each 4 E Diflz(lT2) induces a diffeomorphism C$ E Difs+(S’) defined by @(e2inx) = 
e2i7c$(x) 

Now let 31, be the space of smooth tensor densities on S’ of degree h, with h E R: 

3, = {a(x)(dx)*] a E P’(S’, R)}. 

(Co3 (S’ , R) is identified with the space of l-periodic smooth functions of R). Geometrically, 
3~ is the space of sections of the fibre bundle (T* S’ )@’ over S’ . Each orientation-preserving 
diffeomorphism 4 on the base induces an automorphism $* of 3~, so that 3~ naturally 
inherits a DifS+(S’)-module structure, the anti-action of 4 E Diff+(S’) on a E 3~ being 
defined by 

~*(a(dx>~) = a 0 fJ(~‘>*(dx>? 

In the following, we will often write 4 instead of 4. 
Differentiating this action leads to a Vect(S’)-module structure of on 3~, where Vect(St ) 

is the Lie-FrCchet algebra of vector fields on the circle: a vector field f = f d/ dx acts on 
a h-density a (dx)* according to the formula: 

Lf(a(dx)*) = (fa’ + @a)@~)*. 

In [9], the classification of all non-trivial extensions 

0 -+ 3,~ + GA + Difs+(S’) + 1 
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of the group Diff+(S’) by the Diff+(S*)-module 3~ has been obtained. The arrows are 
supposed to be smooth, and the fibration over DifS+(S’) is topologically trivial (since the 
fibre is contractible): GA is diffeomorphic to Difs+(S’) x 3~. The group structure on GA 
is given by a product of the form 

(4, a)(@> b) = ($0 II/, b + @*a + &(4, @)) 

where B,: is a smooth two-cocycle with values in the module 3~: 

BI.($, @ 0 x) + Bh(@, x) = BL($J 0 1cr, x) +x*&(4, Ilr). 

As is well known, such extensions are classified by the cohomology classes of smooth cocy- 
cles, i.e. by the second space of differentiable cohomology of Diff+(S’), with coefficients 
in 3~, denoted H&(DifS+(S’); 3~). 

Before giving their result, recall that the following map: 

1: f$ I+ log($) 
“II 

d/:4 t-+ dlog($) = $dx 

define (differentiable) one-cocycles with values in the the modules 3u,3t and 32, respec- 
tively. S(4) is the Schwartzian derivative of 4. 

Denote by B the R-valued Bott-Thurston cocycle on Difs+(S’): 

B($J, +I = s loid 0 @I’ d log +‘, 
s’ 

and by Bo the 3u-valued cocycle on Diff+(S’), such that Bo(@, +) is the constant function 
equal to B($, @). 

Theorem 1 [9]. The cohomology groups H&(Diff+(S’);3& where h = 0, 1,2,5,7 are 
one-dimensional, generated by the following non-trivial two-cocycles: 

(1) BOW, $1 = const@, @) = W, 1cr>, 

(2) Bl($, 1cr) = @*W> dllC/, 

(3) B2(49 @> = @*WW> 

(4) 
+*S@ W 

Bs(~, Ilr) = (ti*Sti), (S+), 3 

- g(S@ + S($ 0 +))B5(4,+) 

lffh # 0, 1, 2,5,7, then H&(Di#+(S’); 3~) = 0. 
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The authors of [9] also classify the non-trivial extensions of the Lie algebra Vect(S’) by 
the modules F,J : 

0 + 3~ --+ gk + Vect(S’) + 0, 

the Lie structure on gi = kt(S’) @ .Fk being given by 

[(f, a), (g, b)l = (if, 81, Lfb - &,a + 0, b)), 

where c is a two-cocycle with values in .Fk. 
The dimension of H*(Vect(S’); _FA) was found in [lo]. But the following theorem pro- 

vides cocycles representing the cohomology classes: 

Theorem 2 [9]. The second cohomology group, in the sense of Gelfand-Fuchs, of the Lie 
algebra kct(S1), with coeficients in 3~, is 

H*(kct(S’); 3~) = R* if h = 0, 1,2 

=R ifh=5,7 

=o if h # 0, 1,2,5,7. 

The cohomology groups H*(kt(S’); _Th), where h = 0, 1,2,5,7 are generated by the 
cohomology classes of the following eight non-trivial two-cocycles: 

(1) f g 
Co(f, g) = f, g, * I I 

(2) co(f, g) = i&W?, 8) = w(f, g), 

(3) 

(4) 

(5) c*(f, g) = f”’ g”’ 
I I 

f’ g’ (c@, 

(6) C*(f, g) = f”’ gu’ 
I I 

f g (dx)*, 

(7) 

(8) 

where w denotes the Ge&znd-Fuchs cocycle: w (f, g) = & (f “g’ - g” f ‘> dx. 

The algebra cocycles co, cl, ~2, cg, c7 correspond to the group cocycles Bo, Bl, B2, Bs, 
B7, whereas the algebra cocycles Co, ITI, Z2 cannot be “integrated” to the group D@(S’) 
(they are not 50(2, Q-basic, cf. Van-Est theorem in [l]). 
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2. Coadjoint actions of gh = Vect(S’) b Fk and of its extensions 

5 

The regular dual (cf. [6]) of F1-k is identified with the space of distributions of the form 

I u(dx)A : &>@>‘-* E’ 
s 

a(xb(x> dx, 
St 

where u belongs to Cco(S1, W). We thus obtain an isomorphism of Vecl(S’)-modules: 

I : FL -+ (F,_-h>*, u(dn)’ H &)A, 

iVe. k,(, (dx)“) = (Lf)*zu (dx) A for all fd/dx E Vect(S’) and all u E Coo(S’, W), with 
(Lf)* = -‘Lf in the sense of duality. 

In particular, the regular dual of Vect(S1) = F-1 is &, the space of two-densities. We 
denote by p = (U(dX)2, v(dx)‘-‘) any element of the regular dual (Vect(Sl) $FJJ* E 
F2 @ Fl-h. 

In general, if e is a Lie algebra and e* its dual space, the coadjoint action of 4 on e* is 
defined by ad* = -‘ad, where ‘ad is the transpose of the adjoint action of C on itself. For 
all 6 in e, ad*(e) lives in End(e*). 

If L is a Lie group integrating the algebra e, the coadjoint action of L on e* is defined by 
Ad*(@) =’ Ad($-‘) for all 4 E L, and Ad*(@) lies in GL(4!*). 

In the orbit program of Kirillov (cf. [7]), we are especially interested in the classification 
of coadjoint orbits of a Lie group. If ,u belongs to l*, denote by 0, the coadjoint orbit 
passing through p: 

0, = {Ad*(#)(w)I C$ E L} g L/Stub,, 

where Stub, is the isotropy group, or stabilizer, of I_L. 
The tangent space at p to the group orbit is 

T,O, = {ad*({)(p)/ 6 E l} 2 e/stub,, 

where stub,, is the isotropy algebra of b. 
The orbit is endowed with a symplectic (presymplectic in the infinite dimensional case) 

L-invariant form, the Kostant-Kirillov-Souriau form, whose restriction at TPOP is 

q&d*(O(~), ad*(u)(w)) = (LL, l&!, ~1). 

In case L is a group of transformations of a manifold (L = Diff+(S’) in our context), and 
when the isotropy algebra is finite dimensional, the Lie-Palais theorem asserts it is exactly 
the Lie algebra of the isotropy group. Indeed, apply the following theorem to G = Stub,: 

Theorem 3 (Palais, cf. [8], I. Theorem 3.1). Let G be a group ofdij%rentiuble trunsfor- 
mutions of a manifold M. Let S be the set of all vectorjelds 6 which generate global 
I-parameter groups & = exp(tc) of transformations of M such thatfor all t, q5t E G. If 
the set S generates a finite-dimensional Lie algebra of vectorjelds on M, then G is a Lie 
transformation group and S is the Lie algebra of G. 
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Consequently, if stub, is finite dimensional, we can recover from stub, the connected 
component of the identity of Stab,, but the set of connected components no(Stab,) is 
lost. In the following, we study the stabilizers of moments I_L for the extensions of the Lie 
algebras and groups given by Theorems 1 and 2, trying, in some cases, to know more about 
no(Stub,), using a theorem of Guieu obtained in [3] (cf. Section 7). 

Let us conclude this section with a remark: The coadjoint action of Vect(S’) @F, on 
32 $31--h restricts to the adjoint action of Vect(S’) on 31-k: 

Lf.d,dx4dx)‘-h = (fu’ + (1 - k)f’u)(dx)‘-? 

The differential equation f U’ + (1 - h) f’u = 0, that will appear in determining our isotropy 
algebras, behaves differently according to the values of h: First, if h = 1, this is no longer 
a true differential equation. If h # 1, on each interval 1x0, yo[ on which v does not vanish, 
f = Au’/@-‘), for some A E 5%. So, either h < 1 and then, if v has a zero x0, the only 
solution corresponds to A = 0, i.e. f z 0; or h > 1, and u may vanish without forcing 
f to be trivial, provided the multiplicity of the zero x0 is a multiple of h - 1. Thus, in the 
following classification, the value h = 1 appears as a critical value, and the cases k = 2,5,7 
will reveal classifications of orbits depending on the multiplicities of the zeroes of u. 

3. The case A. = 0: extensions of the gauge group of the line bundle over the circle 

Consider the tangent bundle of the circle as an R-principal (trivial) bundle. The semi- 
direct product Difs’ (S’ ) D Coo (S’ , R) is the preserving-orientation automorphism group 
(or gauge group) of this bundle. 

3. I. Extension by the cocycle CO 

Proposition 1. Let (Vect(S’) @30, kco) be the extension ofVect(S’) by 30 realized by the 
cocycle k& with k E R*. The coadjoint action of(Vect(S1) @ 30, k?o) on its regular dual 
32 @ 31 is given by 

ad* 
( > 

f -$ a (u(dx)2, u dx) = ((fU’ + 2f’U + a’v)(dx)2, (fu)‘dx), 

where U = u + ku. 
Itfollows that the stabilizer of F = (u (dx)2, u dx) is isomorphic to that of I; = (U (dx)2, 

v dx) under the coadjoint action of the true semi-direct product go = Vect(S’) D 30. The 
classi$cation of the stabilizers of p = (u (dx)2, u dx) organizes in the following way: 
1. Zfunowherevanishes, stab, = {(f d/dx,a) : f = A/u, a = -(A/k)[(u+ku)/u’]+ 

B, (A, B) E R2]. It is a two-dimensional abelian Lie algebra. 
2. Ifz, := (X E s’ : v(x) = 0) is not empty, then 

?? either the interior of Z,, i,, is empty, and then 

stab,=((f$.a) ) = (0, A), A E R z R 

is one-dimensional, 
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?? or Z, is not empty, and then 

st&=((f-&,a) : supp f c Z, fl Z, and supp a’ c Z, 
I 

is infinite dimensional. 

Proof. The bracket on (Vect(S’) $ &, k?o) is 

[(A a), (g, b)l = (Cf, gl, f b’ - ga’ + Wg’ - gf’)) 

It follows that the coadjoint action is 

=- (u( dx)2, u dx), ad 
( dx’ ) (g:’ “)) 

fd a 

= -((u(dx)2, vdx), (fg’ - sf’>, (fb’ - w’ + k(fg’ - gf’))) 
=- s u(fg’ - gf’) dx - s u(fb’ - ga’ + k(fg’ - gf’)) dx 

S’ s’ 

= s s, (((u + ku)f)’ + (u + kv)f’)g dx + s a’vg dx + 
S’ s 

s, (uf)‘b dx, 

which gives the formula of the coadjoint action. 

2f’U+ fU’+va’ = 0 
(vf)’ = 0 

We refer to Section 7 for the proof of the classification. 0 

3.2. Extension by the constant Gelfand-Fuchs cocycle co 

Consider the central extension of the semi-direct product go = Vect(S’) D FO obtained 
by the R-valued Gelfand-Fuchs cocycle kw (cf. Section 7). It is denoted &j. The Lie bracket 
on Vect(S’) D 30 cl3 [w is 

[((f, a), a>, ((g, b), ~11 = (([f, sl, f b’ - ga’h kdf, g>h 

Proposition 2. Let (Vect(S’) @&, kco) be the extension of Vect(S’) by .& realized by the 
cocycle kco, with k E R. 

The coadjoint action of (Vect(Sl) $ &, kco) on its regular dual space F2 @ Fl is given 

by 

ad* f i, a (u(dx)*, u dx) 
( > 
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The stabilizer stab,, of Al. = (u(dx)2, v dx) for the coadjoint action coincides with the 
stabilizer of the moment w $ ssl v dx E (Vect(S’) D .Fo @ R)* = CO* for the coadjoint 
action of go. 

Proof. 

(nd- (f -$, a) (u(dx)2, vdx), (g-$, b)) 

= (f u’ + 2f’u + a’v)(dx)2, g$ 
) s 

- k vco(f, g) dx + 
s’ s 

s, <vf 1’8 dx, 

but cg( f, g) is the constant function equal to the Gelfand-Fuchs cocycle CO, hence the 
expression given in the proposition. 

Now it happens that the coadjoint action in the case of the central extension of Vect(S’) D 

.Fo obtained by the cocycle kc0 may be written as 

((2k(~,vdx)f”‘+fu’+2f’u+a’v)(dx)2,(fv)’dx)@0. 

We refer to Section 7 for the classification of orbits in this case. 
As could be easily checked, the coadjoint action of (Difs+(S’) x &, kBa) on & @ 31 

is 

A^d*(@, a)-‘(u(dx)2, v dx) 

CC 
u o ~$4’~ + 2k 

(S > 
v dx S(4) + v o @#~‘a’ (d~)~, v o 44’ dx 

S’ > 

whence it follows that the isotropy group Stab, of /..L is isomorphic to the isotropy group 
of the moment p CB ssl v dx E &j* for the coadjoint action of the semi-direct product 
&I = DifS+(S’) D & (cf. Section 7). 0 

4. The case h = 1 

Proposition 3. Let (Vect(Sl) $ .Fl, kcl) be the extension of Vec(Sl) by FI realized by the 
cocycle kq, with k E R. 

The coadjoint action of (Vec(S’) $ .Fl , kcl) on its regular dual .F2 @ .Fo is given by 

ad*(f--&,a dx)(u(dxj2,v) 

= ((fu’+2f’u -k((f’v)“+(f”v)‘) -av’)(d~)~, fv’). 

Let ,LL = (u(dx)2, v) belong to the dual space. 
1. If the interior of Z,/ = (x E S’ : v’(x) = 0) is empty, i.e. there is non non-trivial 

interval on which v is constant, then the stabilizer of I_L is trivial. 
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2. Let us mention the case ;,I# 0 because of its relation with the Virasoro algebra: 
a either v is constant, equal to vg, and then 

where Stab(u(dx)2@uo) isthestabiZizerofthemoment(u(dx)2$vo) E (Vect(S’)@lR)* = 
virc, the regular dual of the Virasoro algebra with central charge k; 

?? or v is not constant but Z,= 0, and 

stab,=((f-$,adr) = (0, a dx) : sup a c Z,t 

Proof. 

(ad* (,-&,a d*) (u(dx)2, v), (g&, b dx)) 
= -((u(dx>27 VI, if, gl, (fb)’ - (gal’ + k(f’g” - f”g’)), 

and easy calculations lead to the announced expression. It follows that 

(f%,. dx) Estab,, w ( 
2f’u + fu’ - k((f’v)” + (f”v)‘) - au’ = 0 

fv’ = 0 

1. If ZUt= 0, then f v’ = 0 + f = 0, and the first equation reduces to au’ = 0, and again, 
a = 0. So stab, = (0). 

2. If Z,J# 0, then f v’ = 0 H supp f c Z,!. On the open set ZE,, f = 0, and the first 
equation becomes au’ = 0, hence a = 0 on Zi,, or equivalently, supp a c Z,f . 

On ZUr, the first equation becomes 

-2kvf”‘+2f’u+ fu’=O. 

On each connected component IC of Zvl, v is constant, equal to vC. We thus obtain the linear 
differential equation 

-2kv,f”‘+2f’u+ fu’=Oon I,. 

If .Zv= 0, i.e. 21, is never zero: 
?? either v is constant, v = v, and f is a periodic solution on R of the equation 

-2kq.f”’ + 2 f ‘u + f u’ = 0. 

Equivalently, f belongs to the stabilizer of the moment (u(dx)2, v,) E vir: (cf. 
Proposition 3 for the notations) under the coadjoint action of Vect(S’), 

?? or v is not constant, so each interval I, is bounded, of the form ZC =]xC; yC[. 

Lemma 1. f isjat in xc and yC. 
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Indeed, if xc is isolated in the set E of extremities of all the connected components &I, 
then there exists E > 0 such that [x, - E; x,[nZ,r = 0. Since supp f c ZUrr it follows that 

&--E:X< I = 0. 
If not, there exists a sequence (x~)~ of distinct elements of E such that limn+oo x, = xc. 

But f(xn) = 0 for all x,, and a repeated use of Rolle theorem gives f(‘)(xc) = 0 for all 
1 E N. 

Now by Cauchy theorem, the flatness of f in x, implies the triviality of the solutions 
-2kvJ” + 2f’u + fu’ = 0. Then f = 0 on Z,,r . But we already knew that supp f c Z,!, 
so f = 0 identically. Finally, 

stab,=((j--$a dx) = (0, a dx) : supp a c Z,! 0 

Remark 1. The other cases produce trivial or injinite dimensional stabilizers. They do not 
seem to be of great interest. 

The isotropy group. We consider the extension of the semi-direct product Diff+(S’) D .Fl 

definedbythecocyclekBt,k E R,whereBi(+, +> = +*(1(4))dZ(@) = log#o@ $dx. 

Proposition 4. The isotropy group G, of the moment p = (u(dx)2, u) is a$nite cyclic 
group whenever the interior of Z,I is empty, i.e. whenever there exists no interval on which 
u is constant. 

Proof. We must first compute the coadjoint action. We give the result: 

Ad*@, cz dx)(u(dx)2, u) = o @(@‘)2 - (v o @)‘a! + k 

Consequently, the equations determining the isotropy group are 

vof$=v. 

The first equation may be written as 

u 0 4’ ($‘)2 - U’CY + k v”log($‘) + 3u’$ + 2vs(@) 
> 

= u, 

so that 

v’o = u 0 4 (4’)2 - u + k v”log(qY) + W$ + pvq4) 
> 

. 

Now v being smooth and periodic, v’ must vanish. Let us suppose that the interior of Z,t is 
empty. The equation v o 4 = v implies vf2 o 4 qS2 = vf2. Setting 6 = v’~ we obtain 

G o&JP = c. 
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We then apply Guieu’s theorem (cf. Section 7) to deduce that the group G, of diffeomor- 
phisms verifying Eq. (2) is a subgroup of a finite cyclic group, hence a finite cyclic group 
itself. 

For each $J satisfying (2), we set: 

1 
d!# := - U, u O M2 - u + k v”log($‘) + 3u’$ + 2us(@) , 

a priori defined on the dense open subset Z,I’. Then G, is isomorphic to the subgroup of 
G, consisting of elements C$ such that CY~ may be smoothly extended to R (it is a rather 
complicated condition!). 0 

5. The case h = 2, or the “auto-dual” case 

In the case h = 2, the regular dual of kct(S’) D .Fz is 32 $ Vect(S’) (observe indeed 
that 3-r g Vect(S’) and 32 2 (Kx~(S’))*): it is the “auto-dual” case. 

5.1. Extension associated with the cocycle c2 

Proposition 5. Let (Vec(S’) $32, kc2) be the extension of Vec(Sl) by 32 realized by the 
cocycle kc2, with k E U!. 

The coadjoint action of (Vec(S’ ) @ 32, kcz) on its regular dual 32 @ F- 1 is given by 

ad* f$, a(dxj2) (u(di)?. v$) ( 
= ((fu’+2f’u)-(2au’+a’v)+k((f’u)“‘-(f”’v)’))(dx)2, (fv’ - IJ~‘)&) . 

Let ,LL = (u(dx)2, v d/ dx) belong to the dual space. 
1. zfz, = (x E s’ : V(X) = 0) is empty, then the stabilizer of p is a two-dimensional 

abelian Lie algebra: 

stab,= (f,a): f =Av,a=s+A 
I 

u+3kuu’V” 

(A,B) E R2 . 
1 

2. If v vanishes, and if the multiplicities of all its zeroes are finite (so that Z, is a$nite set 
of the circle), then stab, is not zero if and only if all the multiplicities are 1 3. In this 
case, stab, is one-dimensional: 

stab, = (f, a) : f = Au, a = A u + 3kVv’V” 
- 1/3Vf3 
V2 
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Remark 2 (from V. Ovsienko and C. Duval). Denote by T(v) the two-density 

- (1/3W3 
T(v) = vv’v” v2 , 

when v vanishes nowhere. Set 4’ = v -(4/3): this defines an equivariant diffeomorphism of 
the real line. Then the following relation holds: 

s(d’) = $T(v). 

We do not know the interpretation of it. 

Proof of Proposition 5. 

fg, a(d*)‘) (ao’. v&) , (g$* Ndr)‘)) 

= -((u(dx)‘. v-$) , CL 81, fb’ + 2 f ‘b - (ga’ + 2g’a) + k( f ‘g” - g’f “>) 

hence the expression given above. 

So, 

f 2, a(dx)2 
> 

E stab, 

_ 2f ‘u + f u’ - (2v’a + va’) + k(( f ‘v)“’ -f (;Iv)$ I ; 
v v 

1. If v vanishes nowhere: 
The second equation gives f = Au for some A E R. Inserting this expression in the first 

equation, one obtains 

a’ + 2fa = AB, 
V 

where 8 = 2u(v’/v) + U’ + k(((vv’)“’ - ( vv”‘)‘)/v). Hence there exists some B E [w such 
that a = B/v2 + A/v2 1; v2Q dx. Now v26’ = 2uvv’ + u’v2 + k(v(vv’)“’ - ~(vv”‘)‘) = 

(uv2)’ + 3k(vv’v” - 1/31~‘~)‘, hence 

B A 
a = 7 + 7(uv2 + 3k(vv’v” - $3)). 

2. If v vanishes, with zeroes of finite multiplicities: 
In particular, v possesses finitely many zeroes (on the circle). On each interval 1x0; yo[ 

on which v does not vanish, such that v(xo) = v(yu) = 0, we have 

f = Au and a=$(B+Aliv28dx). 

But we are looking for a Coo-function a on A”, so in particular 

lim v2a = v2(xo)a(xo) = Oa(x0) = 0, 
.5,x,, 
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i.e. 

x~lo(B+Ap2e dx) =o, 

hence B = 0 (we use the fact that v26’ is a smooth function). Hence 

A 
a=- s v2 X” 

v2e dx 

on 1x0; ~01. 

Set f = s;, v28 dx and g = v2. They are smooth l-periodic functions on R and a = 

Af/g on 1x0; yo[. If xo is a finite multiplicity zero of g, and if case f/g may be continu- 
ously extended in xo, then the extension is automatically smooth. (Indeed, by the division 
lemma, g(x) = (x - x~>~g(x), where g is smooth and g(xo) # 0; similarly, f(x) = 
(x - ~0)’ f”(x), and j(xo) # 0; if f/g = (x - ~0)'~~ f"/g is continuously extendable in xo, 
then I 2 k.) 

Now, 

1 

7 s 
Xv2t9dx=;(,v2~];o+3X[vv’v+‘3]~0). 

X0 

But u(xo) = 0 hence 

1 

J 

vv’u” - (1/3)(v’)3 + (1/3)v’3(xo) 

7 
v2e dx = u + 3k 

x0 
I?- 

The problem is now to extend in xo the function 

vv’v” - (1/3>(v’>3 + (1/3)v’3(xo) 
V2 

Let us first remark that it must hold v’(xo) = 0. Indeed, (l/v2) I;, v28 dx must be 

extendable in yo (on the left) as well. This implies IX’ v28 dx = 0, i.e. 

Remembering that v(xo) = v(yo) = 0, the condition is equivalent to v’(xo) = u’(yo). But 
since xo and yo are consecutive zeroes of v, they must have opposite signs, so that the only 
possibility is u’(xo) = v’(yo) = 0, and the multiplicity of the zero XIJ (resp. yo) must be 
1 > 2. 

From now on, we suppose that v’(xo) = 0 for each zero of v. Then the expression of a 
simplifies to 

Now write v(x) = (x - xo)‘V(x), with 6(x0) = v(‘)(xo)/Z! # 0 and I 2 2. In a 
neighborhood of x0: 
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uv’u”(X) - (n - xo)’ u(‘)(xo) (x - xl.& 
l! (I - l)! 

vqxo) 6 - Q)‘-* uu)(xo) 
(1 - 2)! 

u(I) (xo)3 
-(x -xo)31-3Ql - l)l(l- 2)l 

and 

-+‘3(x) N -3 1 (x -x0>‘-’ u(/)(xo) 
( > 

3 IJ(qxo)3 
(1 - l)! 

= -;(x _xo)3’-3_. 
(1 - I)! 

As for the denominator u*: 

t?(x) - (x - x0)*’ (v”‘(xo))*. 
(1!)2 

Then if 31 - 3 2 21, i.e. 1 > 3, our function can be continuously extended in xo. If 1 = 2 
the extension would be possible if and only if 

vqxo)3 ( 1 1 - = 
l!(Z - l)!(l - 2)! 3(Z - 1)!2 

> 0, 

But with I = 2 this equality is not true. Hence we proved that l/u* s’, u28 dx can be 
extended in each xo if and only if 1 2 3. 

To conclude: 
??If u has a zero xo with multiplicity < 3, then on each I =]xo; yo[, f = Au and 

a = A/v* s;, v*6’ d x, and we must have A = 0. Hence fir = 0 and alj = 0. It follows 
that f = 0 and a = 0 identically on R. (Indeed, if x; is the zero just before xo, then on 
I’ =1x;; xo[, f must be of the form f = A’u; but the right flatness of f at xo would imply 
u(‘)(xo) = 0 for all 1 2 0 (unless A’ = 0), which is excluded from the discussion. Hence 
A’ = 0, and fi/l = 0 and alp = 0.) 

??If the multiplicities of the zeroes are all 2 3, then on each I =]xo; yn[, f = Au and 
a = A(u + 3k(uu’v” - (1/3)~‘~/v*)). A does not depend on the interval because v is 
nowhere flat. 0 

The isotropy group. Consider the extension of the semi-direct product Diff+(S’) D F2 
realized by the cocycle k&(4, I++) = +*(Zd)S(@) d-x*, k E IX*. 

Proposition 6. 
1. If v vanishes nowhere, then the isotropy group Stab, of the moment p = (u dx*, 

(vd/ dx)) is isomorphic, as a Lie group, to the cylinder S’ x R. Consequently, the 
orbit passing through p is isomorphic to: 

0, E Diff+(S’)/S’ x 32/!% 

2. If v vanishes, and all the multiplicities of its zeroes are finite and 2 3, then Stab, is 
isomorphic, as a Lie group, to a semi-direct product no(Stab,) D R, where the group 
no(Stab,) of connected components of Stab, is a$nite cyclic group. 
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Proof. The expression of the coadjoint action is 

= 
(( 

~~,6t2-2(a~)‘-k((~log9’)111 

- (%SW)‘9’)) dx2, $%). 

The equations determining the isotropy group are therefore: 

(1) If TV does not vanish, the group of solutions of the second equation is conjugated to the 
group of rotations by 

This is proved in Lemma 2, Case 1, stated after the proof. 
For each +[[I obtained, the first equation integrates to 

with A E R and 

There is a well-defined homeomorphism: 

Stab, - W/Z x R 

($9 a> * (VI, A), 

and the group structure transported from Stab, to W/Z x R has the following form: 

WI, AW’I, A’) = WI + [/'I, A + A’ + vW1, V'l)>, 

where y ([I], [l’]) = J?” “) t$,,, v2 dx + log #il, o 411’1 (O)S(&$(O), which proves, without 
calculations, that y is a real-valued two-cocycle on the circle. It is clearly differentiable, 
but the differentiable cohomology of compact groups is known to be trivial (cf. [2]), so that 
Stab, is isomorphic, as a Lie group, to a direct product R/Z x II%. 

(2) By Palais’ theorem and the previous proposition, we know that if v vanishes, with 
finite multiplicity zeroes, then Stab, is one-dimensional if the multiplicities are 2 3, and 
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totally disconnected if not. Suppose then the multiplicities are > 3: we must first solve the 
equation 

u04 

7- =“. 

This is done in Lemma 2, Cases 2 and 3. Denote by G, d/& the group of such diffeomor- 
phisms. For any solution 4 E G, d/ &, CI must be defined by 

At 1 
a=-+- S ‘e,v’ dx 

v= v= Xi 

on each interval ]xi , xi+1 [, where xi and xi+1 are two consecutive zeroes of v. Necessarily, 
Ai = 0 and l/v2 JXyf’ t$,v2 dx = 0. So, 

1 Q!=- 
s v= x, 

e,v2 dx = f 
s 

e,v2 dx. 
XI 

Thus, Stab, is in bijection with the set of 4 E Gvd,b such that cr = (l/v=) s;, t9$v2 dx 
defines a true smooth function. But G,d,dx is Lie-isomorphic to a semi-direct product 
Z/~HDR, andits Lie subgroup Stab, is one-dimensional. It follows that Stab, is isomorphic 
to Z/mZ D R, with m dividing n. In particular, Stab, contains the connected component of 
G, d/ &, consisting of those diffeomorphisms 4 in G, d/ dX fixing all the zeroes of v. 0 

Lemma 2. Let v(x) d/ dx be a smooth vectorJield on the circle. 
Suppose v does not vanish. Then the isotropy group G, d/ & C Diff+ (S1) of v(x) d dx 
for the adjoint action, i. e. the group of dtyeomorphisms r$ such that 

is conjugated to the group of rotations SO(2, W) = S’. 
If v possesses N zeroes, N E N*, all with finite multiplicities, then the connected 
component of the identity in the isotropy group G,d/dx is isomorphic to kk The whole 
isotropy group G, d/ dx is isomorphic to a semi-direct product no(G, d/ h) D R, where 
the group no(G, d/&) of connected components is afinite cyclic group. 
More precisely, let (mi, ei) be the signed multiplicity of the ith zero xi of v (i.e. ei is 
the sign of the first non-zero derivative v (“i)(xi)), and 1 the period of the sequence 
i + (mi, Et): 

(mi, Et) = (mi+t, Ei+t) for all i E Z 

with 1 minimal. 1 divides N, and no (G, ,-J/ h) is isomorphic to the cyclic group Z/(Nll)E. 

In the semi-direct product nc(G,d,dx) D [w, the action is continuous. But if m is odd, the 
only continuous action of Z/mh on I4 is the trivial one; if m is even, the only non-trivial 
continuous action of Z/mZ on Iw is defined by p*(c) = (-l)pmod2c, for p E ZlmZ and 
c E R. 
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Proof of lemma 2. We could first observe that the stabilizer of u d/ dx, for the infinites- 
imal adjoint action, consisting of vector fields f d/ dx such that fv’ - v’f = 0, is one- 
dimensional if the multiplicities of the zeroes of v are finite, so that Palais’ theorem asserts 
G, d, dx is a one-dimensional Lie group. 

(1) If u does not vanish, the equation to solve is equivalent to 

So let V be a primitive of l/v. It is an equivariant diffeomorphism of R, the length of 
equivariance being &r (l/v) dx. Then V’ = V’ _ _ o C#J c#i, and there exists 1 E R such that 
4 = V-l o z o V, where q is the translation x E IF8 I-+ x + 1 E R. The diffeomorphism 
& := V-’ o Tl o V is a 1-equivariant diffeomorphism of R, and descends to an orientation- 
preserving diffeomorphism of the circle, @Ill, [Z] E R/Z. 

(2)and(3)Letxt <x2 < ... < XN be the zeroes of u in the interval [0, l[. The zeroes of 
u in R areXi+kN = xi fk, 1 f i 5 N, k E H. Let Vi be aprimitive of l/v on Zi =]Xi, xi+] [: 

vi(x)= x5 s zj v(t)’ 
where zi E Zi has been chosen. V/(x) = l/v(x) has a constant sign on Zi, and lim > 

X’Xj 
Vi(x) = rfroo, limXl, +, & (x) = TOO, so that Vi realises a diffeomorphism of Zi onto R. 

We want to solve u L J/J = 21. This implies that 4 permutes the zeroes of u, respecting 
their signed multiplicities and preserving their arrangement (because $ is increasing). So, 
let us introduce the period I as explained in the lemma. There exists p E {0, 1, . . . , N/ 1 - 1) 
such that $(x1) = x~+~Z, which forces 

@(Xi) = Xi+pl 

for all i E E. Then on each interval Zk, 

Of course, we must have Ck+N = Ck for all k E E for C$ to be l-equivariant. Moreover, 
writing that $11, and &Zk_, must fit together to define a smooth function in the neighborhood 
of Xk, we deduce a relation between ck and c& 1: thus, all the ck are determined by c := ct , 
and 6 is defined by c E R and p E Z/(N/Z)Z. $J descends to a diffeomorphism 4 of 
the circle, and the correspondence 6 H 4 is a bijection, as well as the correspondence 
r#~ I+ (p, cl). The group structure on G,d/dx transports to a group structure on Z/(N/Z)B 
of the form 

(PT cm’, 4 = (P + P’, c’ + (P’>*C), 

for a certain continuous action of Z/(N/Z)H on R 0 
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5.2. Extension associated with the cocycle 22. 

Proposition 7. Let (kct(S’) CB F2, kC2) be the extension of Vect(S’) by .7=2 obtained by 
the cocycle k& with k E R. 

The coadjoint action of (Vect(S’) CI+ _?+, k&) on its regular dual .Fz $ .F_ 1 is given by 

a(dx)‘) (Wx)“, us) 

= (fu’ + 2f’u - (2au’ + a’u) + k((fu)“’ + f”‘u))(dx)2, (fu’ - uf’)$ 
> 

. 

Let p = (u(dx)2, v d/ dx) belong to the dual space. 
1. zfz, = (x E S’ : u(x) = 0) is empty, then the stabilizer of p is a two-dimensional 

abelian Lie algebra: 

stab, = 
1 

(f, a) : f = Au, a = $ + A(u + 3ku”), (A, B) E R2 . 

2. Z, # 121, then the stabilizer of p is a one-dimensional Lie algebra: 

stab, = {(f, a) : f = Au, a = A(u + 3ku”), A E R}. 

Proof. The equations giving the stabilizer of p are 

2f’L.J + f U’ - (2u’a + ua’) + k((f u)“’ + f”‘u) = 0, 
f 21’ - uf’ = 0. 

Replace 8 in the preceding proposition by 0’ = 2&/u + U’ + k((u2)“’ + uu”‘/u) and 
observe that u ((u2)“’ + uu”‘) = (3u2u”)‘. 0 

Observe that the type of this classification is different from the preceding case: here, the 
multiplicities of the zeroes of u are not significant. 

6. The cases h = 5 and I = 7 

Proposition 8. Let (Vect(Sl) CD&, kq) be the extension of Vect(S’) by 35 realized by the 
cocycle keg, with k E R. 

The coadjoint action of (Vect(S’) @ 35, kcs) on its regular dual .Fz @ F-4 is given by 

ad* f$, a(dx)5 (u(d.~)~, ~(d.x)-~) 
> 

= (((f u’ + 2f’u) - 5u’a - 4~’ - k((f”‘u)‘4’ + (f’4’u)“‘))(dx)2, 

(v’f - 4vf’)(dx)-4>. 

Let p = (am, ~(dx)-~) belong to the regular dual. Set w = )v]~/~ and let g(w) be a 
primitive of w(w4w”‘)(4) + w(~~w(~))(~). 
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1. zfz, = (x E s’ : v(x) = 0) is empty, then the stabilizer of p is a two-dimensional 
abelian Lie algebra: 

stab, = (f, a) : f = Aw,a = B + A 
llW2 

W5 
--F(w), (A, B) E R2 . 

I 

2. If Z, # 0 and all the multiplicities mi (v) of the zeroes xi of v are$nite: 
?? either there exists a multiplicity mi (v) not divisible by 4, and then 

stab, = {O), 

?? oral1 the multiplicities mi (v) are in 4N*, of theform 4li, li E N* (SO thatli = mi (w) = 
mi (v)/4), and then stab, = {0) or is one-dimensional. 

More precisely, if for all i, li > 7, then stab, is non-trivial if ana’ only if all the zeroes 
of v are zeroes of u with multiplicities mi (u) satisfying the condition 

mi(u) > ,nzio - 4 

for all i. In this case, 

stab, = (f,a) : f = Aw,a = A 
UW2 -kg(w) 

W5 

Remark 3. There is a formal expression for a primitive g(w): 

g(w) = 12~~w’~w” + ~~w~(w(~)w’~ + w”‘w”w’) 

+w4(18wC5)w’ + 18~“~~~) + 3~“‘~) + 2w5w@). 

Sketch of the proof. Observe that if v(x0) = 0, Iv1 ‘I4 defines a smooth function in a 
neighborhood of x0 if and only if the multiplicity of the zero x0 is divisible by 4 (in case 
the multiplicity is finite). 

The discussion on the relation between the multiplicities of the zeroes of v and u comes 
from the possible undefiniteness of uw2/w5 when v vanishes. ??

Proposition 9. Let (Vect(S1) @.F2, kc7) be the extension of Vect(S’) by 3~ realized by the 
cocycle kcl, with k E R. The coadjoint action of (Vec(S’) CB 31, kc7) on its regular dual 
32 $3-6 is given by 

= ((fu’ + 2f’u - 7v’a - 6va’ 

+k(2((f”‘v)‘@ + (f %)“‘) + 9((f (4)v)(5) + (f ‘5’v)‘4’)))(dx)2, 

x(v’f - 6vf’)(dx)-6). 

Let p = (u(dx)2, ~(dx)-~) belong to the dual space. Set w = 1v11f6 and let h(w) be a 
primitive of 2w((w6w”‘)@) + (w6w(6))“‘) + 9w((w6w(4))(5) + (w6w(5))(4)). 
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1. Ifz, = {x E S’ : v(x) = 0) is empty, then the stabilizer of p is a two-dimensional 
abelian Lie algebra: 

UW2 
stab, = (f, a) : f = Aw, a = A + A 

WI 
--fhtw), (A, B) E R= 

2. If Z, # lil and all the multiplicities mi (v) of the zeroes xi of v arefinite: 
?? either there exists a multiplicity mi (v) not divisible by 6, and then 

stab, = {0}, 

?? or all the multiplicities mi (v) are in 6N*, of theform 61t, li E N* (so that li = rni (w) = 
mi (v)/6), and then stab, = {0) or is one-dimensional. 

More precisely, if for all i, li 1 9, then stab,, is non-trivial if and only if all the zeroes 
of v are zeroes of u with multiplicities mi (u) satisfying the condition 

for all i. In this case, 

stab, = (f,a): f =Aw,a=A uw2 --‘kh(w), (A, B) E R= . 
I 

7. Addendum: coadjoint orbits of the Bott-Virasoro central extension of 
($50 = Di#+(S’) D 30. 

Consider the Bott-Thurston cocycle of DtT+(S’) as a cocycle Bo on (30, and form the 
central extension &: 

0--+R+@&+@c+1 

The group structure on 6 Z (350 x II3 Z Dzr+(S’) x .Eo x R is given by 

(4, o, c)(@, B, 4 = (4 0 II/, B + o 0 @, c + d + Bo(4, @)). 

Denote by go the Lie algebra Vect(S’) D 30 of the Lie group (550. The coadjoint action of 
@oonthedualg^o* E.F2@.Fl @Ris 

A;i*(& a)-‘(~ dx=, v dx, c) = ((u o &$‘=+u’v o &5’+cS(+)) dx*, v o $@‘dx, c). 

As for the infinitesimal action of go on G*: 

(u dx*, v dx, c) 

= ((-2cf”‘+2f’u+ fu’+va’)dx*, (vf)‘dx,O). 

As usual, denote by stabWe, the stabilizer of the moment ,u @ c = (u dx2, v &, c). 
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In [5], the coadjoint orbits of the central extensions of 050 and of go have been studied. 
We give here some relevant results. Denote again by 2, the set of zeroes of v. 

Proposition 10. 
1. rf Z, = 0, then stabWec is a two-dimensional Lie algebra: 

Stabmc= ((.f--&,a) Ego:f =:,a=B-A(s+$S(SV)), 

(A, B) E R* 
I 

where S(s v) is the Schwartzian derivative of any primitive of II. 

2. If Z, # 0, either the interior 2, is empty, ana’ then stab,@, is one-dimensional: 

stabPB, = ((0, a E ao) : a0 E R}, 

or the interior Z, is not empty (but v # 0 identically}, and then, if the charge c is not 
trivial, 

stabWac = ((0, a) : suppa’ c Z,}, 

whereas 

stab,@0 = ((f$,a) : supp f c Z, rl Z, and supp a’ c Z, 
I 

. 

If however v = 0, stab(, dx2,0,c) g vir(, &2,c) D Fo, where Vir(, &Z,c) denotes the 
stabilizer of (U dx*, c) under the Virasoro algebra coadjoint action. 

We now turn to the determination of the isotropy groups Stab,@,. 

Theorem 4 (isotropy groups, [5]). 
If Z, = 0, i.e. v vanishes nowhere, then the isotropy group Stab,@, is Lie-isomorphic 
to a cylinder R x S’, so that the orbit passing through p is isomorphic to 

0, = Difs+(S’)/S’ x Coo(S1, R)/R. 

If Z, # 0 but the interior Z, is empty, then StabWBc is Lie-isomorphic to a directproduct 
R x Z/r& for some n E N*. In particular the set of connected components of Stab, is 
isomorphic to ajnite cyclic group. 

If the interior 2, is non-empty then Stab,@, is infinite dimensional. 

The proof of the previous theorem makes use of a theorem of Guieu, obtained in [3]: 
Consider the coadjoint action of Diff+(S’) on the regular dual (Vect(S’))* g 32. For all 

4 E Difs+(S’) andallu dx* E 32, 

Ad*(@)-‘(u dx*) = u o 4 4’* do*. 
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Then 
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Theorem 5 [3]. The isotropy group 

Stab, dx2 = (f$ E Difs+(S’) : u 0 cpc#P = 2.4) 

is a finite cyclic group if and only if Z, the set of zeroes of u, is non-empty with an empty 
interior: In this case, Stab, dx2 freely acts on the circle. 
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